DTU Studieprojekt - Evolutionary dynamics in cancerous tissue network

Danmarks Tekniske Universitet (DTU)

Ph.d. & forskning
Studieprojekt/speciale
Storkøbenhavn

Evolutionary dynamics in cancerous tissue network

Udbyder
Vejleder
Sted
København og omegn
Background. Cancer progression is a process of somatic evolution within the body. Cancer results from a sequence of genetic and epigenetic changes which lead to a variety of abnormal cell phenotypes including increased proliferation and survival of somatic cells, and therefore, to a selective advantage of (pre-)cancerous cells. (Pre-)cancerous tissues often evolve in cell populations with
distinct spatial structure (epithelia). In spatial domains, clones expand through the tissue via (adaptive) selective waves which can be described by stochastic Fisher waves (sFKPP model). Once a mutation occurs somewhere in the habitat (stars), its fate is not yet decided: mutations are subject to stochastic number fluctuations (genetic drift) and may go extinct. When mutations survive number fluctuations and get established, they may spread throughout the entire population (fixation), giving rise to the adaptive wave. Each time a mutation is fixated, the fitness of the entire population is increased by the selective fitness effect of the mutation, as indicated by changing colors in the figure below (A,B). - Two dynamic scenarios are feasible: periodic selection (panel A) where mutations spread strictly consequently, i.e., the time to fixation is always shorter than the waiting time until the next mutations occurs (tfix

Project description. The diagnostics of cancer patients histological analysis today is increasingly using genetic sequencing. An important goal is to interpret the genetic cell diversity (mosaic) in tissues to accurately estimate the stage of the cancer so that the treatment can be optimized, and ideally, to capture and monitor pre-cancerous states before the disease becomes rampant. - Prostate cancer is one of the most abundant cancers, costing a lot of lives. However, researchers today are still working on finding a detailed understanding of the progression of these cancers. Recent research efforts reconstructing the 3D structure of such
tumors reveals a complicated spatial structure composed of glands and channels connecting channels, thus forming a complex network. The goal of this project is to take the results for the spread of selective Fisher waves of mutant cells valid for simple topologies and extend to network structures observed in tumors and to estimate the time to accumulate the necessary mutations that trigger malignancy of the cells, and to estimate genetic diversity. Network data from 3D reconstructed tumors are available through a collaboration with medical researchers at the University of Bonn, Germany.

Goals.
i) Develop network model based on statistical network properties extracted from imaging data.
ii) Numerical stochastic model of evolutionary dynamics on a spatial network.
iii) Analytic estimation of different tumor progression models using scaling arguments, characterization of genetic diversity.
iv)* Dynamics of clonal interference in heterogeneous fitness landscape.
v)* Modeling and analysis of growth of channel network (dynamics of evolving network, analytic and/or numerical).
The project may include the tasks: numerical simulation, network theory, stochastic processes, biophysical modeling/math biology.

I samarbejde med
Yuri Tolkach, University of Bonn, Germany

Emneord

Tags
Kontakt
Virksomhed/organisation
DTU Compute

Navn
Erik Andreas Martens

Stilling
Lektor

Mail
eama@dtu.dk

Vejleder-info
Kandidatuddannelsen i Kvantitativ Biologi og Sygdomsmodellering
Vejleder
Erik Andreas Martens

ECTS-point
30

Type
Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Medicin og Teknologi
Vejleder
Erik Andreas Martens

ECTS-point
30

Type
Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Matematisk Modellering og Computing
Vejleder
Erik Andreas Martens

ECTS-point
30

Type
Bachelorprojekt, Kandidatspeciale

Kandidatuddannelsen i Fysik og Nanoteknologi
Vejleder
Erik Andreas Martens

ECTS-point
30

Type
Bachelorprojekt, Kandidatspeciale


Login for at se hele opslaget

Dette jobopslag er kun tilgængeligt for vores brugere. Log ind eller opret en profil - det er gratis og tager kun to minutter.

Log ind med sociale medier


Log ind med din karriereprofil

@


Glemt kode Ny bruger

Løbende ansøgningsfrist

Angiv venligst i din ansøgning, at du har ansøgt opslaget via Studerende Online

Ph.d. & forskning
Studieprojekt/speciale
Storkøbenhavn
Kemi, Biotek & Materialer
Matematik, Fysik & Nano
Medicinal & Sundhed
Naturvidenskab
Teknik & Teknologi
Forskning & Udvikling
Naturvidenskab
Teknik



Danmarks Tekniske Universitet (DTU) - hurtigt overblik


Danmarks Tekniske Universitet (DTU)
Danmarks Tekniske Universitet (DTU)
DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 11.200 studerende uddanner sig her til fremtiden, og 6.000 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Placering
Anker Engelunds Vej 1
2800 Kgs. Lyngby
Logo: Danmarks Tekniske Universitet (DTU)
Efterspørgsel efter nye talenter

Hvilke jobtyper og arbejdsområder udbyder vi normalt og hvor mange nye talenter søger vi efter?


Nyeste tweets
Henter tweets...
Facebook feed

Henter facebook feed...

LinkedIn

Følg vores aktiviteter på LinkedIn.


Webside

Få mere info omkring vores virksomhed på vores egne websider:

www.dtu.dk


Danmarks Tekniske Universitet (DTU) i Google

Er der andre informationer om os, som du burde vide? Se, hvad en Google-søgning siger.



https://studerendeonline.dk/job/1219164/
Vi bruger cookies til statistik, sociale medier og brugeroplevelse. Ved at bruge sitet accepterer du vores privatlivspolitik. (luk)
HPT