Få opslag som dette inden alle andre

DTU Studieprojekt - Exploring the synthesis of functional pigments for coatings application using flame-spray pyrolysis

Danmarks Tekniske Universitet (DTU)

Opret en karriereprofil og deltag i lodtrækningen om ét gavekort på 2.000 kr til LETZ SUSHI!

Exploring the synthesis of functional pigments for coatings application using flame-spray pyrolysis

Udbyder
Vejleder
Sted
København og omegn
The incorporation of a catalytically active material, commonly of inorganic nature, into a coating formulation makes possible transferring the catalytic functionality to the surfaces where the coatings are applied, resulting in a versatile strategy to promote chemical processes of interest for domestic and industrial uses. In the case of photocatalytic coatings, a semiconductor is embedded within an organic matrix that, under appropriate light irradiation, stimulates the production of highly energized species that can be harnessed for multiple environmental- and health-related applications [1]. Some examples are coatings with air purification, self-cleaning, antibacterial and antifouling properties [2]. In addition, the removal of the organic fraction, by means of calcination or pyrolysis, allows the use of the coatings in solar energy conversion devices, for example in a photovoltaic cell [3]. As result, the numerous applications of photocatalytic coatings make evident their appeal as a promising technology for the sustainable development of urban areas and clean energy supply, among other uses.

The full implementation of photocatalytic coatings into the society requires the development of novel and improved photocatalytic materials. The state-of-the-art photocatalytic pigment, nanosized titania (particle size

An alternative to the use of nanoparticles is the synthesis of photocatalytic pigments with larger particle size (> 100 nm), but still high density of catalytic active sites, combined with extension of the absorption behavior to the visible part of the spectral region by inclusion of dopants. This can be accomplished by engineering mesoporous spherical particles (pore diameter between 2-50 nm) [6]. The production of these materials is typically carried out using template-assisted methods where a combustible component (e.g. carbonaceous spheres or organic compounds) is calcined, resulting in hollow microstructures [7]. The synthesis parameters can be tuned in order to produce hierarchical structures with different phase composition and morphology (e.g. single- or multi-shelled microspheres) [8]. An example of these synthetic methods is autoclave hydrothermal synthesis, which enables precise control of the microspheres features, but with low volume of production due to the batch operation mode at lab-scale [9]. Spray-drying has been proved a suitable technique to produce hollow microspheres, enabling continuous flow production and easy scaling-up [10]. However, the spray-dried composite powder requires annealing in air to yield hollow microspheres, resulting in a two-step process. Alternatively, the precursor solution could be sprayed directly into a heating zone to facilitate the early thermal decomposition of the template, reducing the synthesis production to a single step [11]. Potentially, this synthesis could be accomplished using flame-spray pyrolysis (FSP). In a typical FSP preparation of metal oxide particles, a precursor solution is sprayed over a flame at high temperature, resulting in fast nucleation that typically leads to nanoparticle formation [12]. The combination of the precursor with an organic template that burns during the spraying may modulate the nucleation and growth of the inorganic layer and enable the production of hollow microspheres.

This project has a goal exploring the potential use of FSP towards the synthesis of hollow microspheres as functional pigments for coatings formulation. As preliminary approach, the produced particles could be made of TiO2 and be used as photocatalytic pigments for the production of photocatalytic coatings. Moreover, other coatings applications could be investigated. Some examples are the use of hollow microspheres as functional pigments for reflective coatings [13] or as inorganic carriers for encapsulation of anticorrosive agents [14].

The student will have access to the FSP setup available at our facilities and to multiple structural characterization techniques, namely Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDS) and N2-physisorption, for the elucidation of the morphology of the synthesized materials. Finally, the most promising samples will be integrated into a coating and the performance evaluated in artificial irradiation experiments.

This project will take place within the framework of the CoaST research center at the DTU Chemical and Biochemical Engineering department, in collaboration with CHEC.

Forudsætninger
Relevant BSc degree, with emphasis on physical chemistry and material science. Experience in laboratory synthesis and characterization of inorganic materials is an advantage.

Emneord

  • Bioteknologi og biokemi
  • Fysik
  • Informationsteknologi
  • Kemi
  • Matematik
  • Transport og logistik
  • Teknisk kemi
  • Sundhed og sygdomme
Kontakt
Virksomhed/organisation
DTU Kemiteknik

Navn
Amado Andrés Velázquez-Palenzuela

Stilling
Forsker

Mail
aavp@kt.dtu.dk

Vejleder-info
Kandidatuddannelsen i Kemisk og Biokemisk Teknologi
Vejleder
Amado Andrés Velázquez-Palenzuela

Medvejledere
Jochen Dreyer, Jakob Munkholt Christensen, Kim Dam-Johansen

ECTS-point
25 - 35

Type
Kandidatspeciale

Opslaget er indhentet automatisk fra virksomhedens jobsider og vises derfor kun som uddrag. Log ind for at se det fulde opslag eller gå videre til opslaget her:

læs opslaget hos Danmarks Tekniske Universitet (DTU)



gem
husk frist
print
send til mig
Ansøgningsfrist: snarest muligt
Geografiske områder

Jobsøgerinteresse

Hvor meget interesse vækker opslaget hos de jobsøgende? Log ind og se, hvor populært opslaget er.



Angiv venligst i din ansøgning, at du har set opslaget i StuderendeOnline

Ansøg
Opslagstype
Ph.d. & forskning
Studieprojekt/speciale
Geografi
Storkøbenhavn
Uddannelse
Anlæg, Byggeri & Konstruktion
Fødevarer & Veterinær
Kemi, Biotek & Materialer
Klima, Miljø & Energi
Matematik, Fysik & Nano
Naturvidenskab
Produktion, Logistik & Transport
Teknik & Teknologi
Arbejdsområde
Forskning & Udvikling
Naturvidenskab
Teknik
Få opslag som dette inden alle andre

Danmarks Tekniske Universitet (DTU) - hurtigt overblik


Danmarks Tekniske Universitet (DTU)
Danmarks Tekniske Universitet (DTU)
DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 11.200 studerende uddanner sig her til fremtiden, og 6.000 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Placering
Anker Engelunds Vej 1
2800 Kgs. Lyngby
Logo: Danmarks Tekniske Universitet (DTU)
Efterspørgsel efter nye talenter

Hvilke jobtyper og arbejdsområder udbyder vi normalt og hvor mange nye talenter søger vi efter?


LinkedIn

Følg vores aktiviteter på LinkedIn.


Webside

Få mere info omkring vores virksomhed på vores egne websider:

www.dtu.dk


Danmarks Tekniske Universitet (DTU) i Google

Er der andre informationer om os, som du burde vide? Se, hvad en Google-søgning siger.




https://studerendeonline.dk/job/1660301//
Karriereprofil i Jobbanken
Opret karriereprofil: Automatiser din jobsøgning med jobagenter, få adgang til nyeste job før andre og bliv synlig for arbejdsgivere med en talentprofil.
nej tak, tag mig til jobopslaget
nej tak, vis ansøgningsinfo
KONKURRENCE
HPT