Få opslag som dette inden alle andre

DTU Studieprojekt - Development of coatings for solnar energy conversion applications.

Danmarks Tekniske Universitet (DTU)

Opret en karriereprofil og deltag i lodtrækningen om ét gavekort på 2.000 kr til LETZ SUSHI!

Development of coatings for solnar energy conversion applications.

Udbyder
Vejleder
Sted
København og omegn

  • Background
    The environmental concern due to the climate change and the imperative need to develop sustainable technologies for energy production have encouraged researchers to investigate solar energy conversion methods as alternative to fossil fuel-powered devices.

References

· Based on the obtained results, further modification of the film preparation may occur in order to tune structural parameters. Finally, the optimized films will be assemble into a photovoltaic cell for performance evaluation.

· Evaluation of the resulting films, namely through microscopy analysis and electrochemical characterization (e.g. half-cell configuration).

· Preparation of samples using selected raw materials and equipment.

· Evaluation of the setups and materials that could be potentially used in the investigation, including equipment and chemicals for the production of samples and techniques for analysis of the performance.

· Literature study to establish past and current efforts in this area, as well as to get insight into the concepts of coatings and photovoltaic technology.

Project structure
This work will take place within the framework of the CoaST research center and conceive the following steps as tentative plan:

The candidate will make use of a toolbox of characterization tools to evaluate the performance of the resulting electrode layers, namely microscopy analysis (SEM) and diverse electroanalysis techniques, including assembly of a functional photovoltaic cell using the optimum coating formulations.

Aim of the project
The aim of this project is the formulation, production and characterization of coatings with application in photovoltaic technology, being the development of DSSC photo-anodes a prominent example. This approach covers exploring different combinations of commercial photocatalysts (e.g. TiO2 nanoparticles) and organic binders that can provide an adequate porous structure after calcination. Alternatively, the use of semiconductors synthesized in the course of the research as replacement of nanosized TiO2 is also conceived. The project is also open to the investigation of other photovoltaic systems where engineering coating-like structures (e.g. thin-films) is demanded, such as spray-on or organic solar cells.

A promising area within solar paints where coatings technology is relevant is in those formulations addressed to manufacturing dye-sensitized solar cells (DSSC). DSSCs make use of porous TiO2 photo-anodes that are prepared by heat-treatment of TiO2-coatings applied on conductive glass electrodes [6]. The key component of these coatings are TiO2 nanoparticles that sinter upon calcination and that are further sensitized with a visible-light absorbing dye. The formulations of these solar paints bears multiple similarities with organic-based coatings in terms of composition (e.g. binders, solvents, and additives) and application methods, with the particularity that only an inorganic layer remains after calcination.

The term solar paint covers those type of coatings that can potentially harvest solar energy by its direct conversion into electricity, operating similarly to traditional silicon-based photovoltaic panels [1]. These paints makes use of semiconductors that under sunlight exposure are able to generate charge carriers upon absorption of photons, resulting in an electric current [2]. Unlike traditional solar photovoltaic panels, these solar paints can be easily manufactured, resulting in a more inexpensive technology. In the best possible scenario, instead of the installation of photovoltaic modules, the paints could be applied directly on the roof of a building provided with a conductive surface or on the top of a vehicle and act as solar-generators. Although the concept is highly promising, solar paints are still far away from implementation and have been investigated only at lab-scale, exhibiting in some cases low conversion efficiency [3]. One of the major challenges to overcome is that the composition of the solar paints differs substantially from the typical formulation used in the preparation of organic-based coatings. Whereas the former are typically simple colloidal dispersions of nanosized semiconductors (e.g. quantum dots) [4,5], the latter include additional ingredients (e.g. binder, plasticizer, wetting agents) that are essential for the adequate dispersion of ingredients and that ensure the correct application of the coatings, providing also the resulting film with weathering resistance. Moreover, the use of solar paints in actual environments requires their application on conductive surface and the installation of a current collection framework (electrodes) to create functional solar generators that can operate with adequate efficiency.

  • [1] R.M. Swanson, A Vision for Crystalline Silicon Photovoltaics, Prog. Photovoltaics Res. Appl. 14 (2006) 443–453. doi:10.1002/pip.
  • [2] M.P. Genovese, I. V. Lightcap, P. V. Kamat, Sun-Believable Solar Paint. A Transformative One-Step Approach for Designing Nanocrystalline Solar Cells, ACS Nano. 6 (2012) 865–872. doi:10.1021/nn204381g.
  • [3] C. Steinhagen, T.B. Harvey, C.J. Stolle, J. Harris, B.A. Korgel, Pyrite Nanocrystal Solar Cells: Promising, or Fool’s Gold?, J. Phys. Chem. Lett. 3 (2012) 2352–2356. doi:10.1021/jz301023c.
  • [4] D. Paz-Soldan, A. Lee, S.M. Thon, M.M. Adachi, H. Dong, P. Maraghechi, M. Yuan, A.J. Labelle, S. Hoogland, K. Liu, E. Kumacheva, E.H. Sargent, Jointly Tuned Plasmonic − Excitonic Photovoltaics Using Nanoshells, Nano Lett. 13 (2013 Forudsætninger
    Relevant BSc degree, with emphasis on physical chemistry and material science. Experience in energy conversion devices, photovoltaics and/or electrochemistry is an advantage.

Emneord

  • Bioteknologi og biokemi
  • Fysik
  • Informationsteknologi
  • Kemi
  • Matematik
  • Transport og logistik
  • Teknisk kemi
  • Sundhed og sygdomme
Kontakt
Virksomhed/organisation
DTU Kemiteknik

Navn
Amado Andrés Velázquez-Palenzuela

Stilling
Forsker

Mail
aavp@kt.dtu.dk

Vejleder-info
Kandidatuddannelsen i Kemisk og Biokemisk Teknologi
Vejleder
Amado Andrés Velázquez-Palenzuela

Medvejledere
Jakob Munkholt Christensen, Kim Dam-Johansen

ECTS-point
25 - 35

Type
Kandidatspeciale

Opslaget er indhentet automatisk fra virksomhedens jobsider og vises derfor kun som uddrag. Log ind for at se det fulde opslag eller gå videre til opslaget her:

læs opslaget hos Danmarks Tekniske Universitet (DTU)



gem
husk frist
print
send til mig
Ansøgningsfrist: snarest muligt
Geografiske områder

Jobsøgerinteresse

Hvor meget interesse vækker opslaget hos de jobsøgende? Log ind og se, hvor populært opslaget er.



Angiv venligst i din ansøgning, at du har set opslaget i StuderendeOnline

Ansøg
Opslagstype
Ph.d. & forskning
Studieprojekt/speciale
Geografi
Storkøbenhavn
Uddannelse
Elektro & Telekommunikation
IT
Kemi, Biotek & Materialer
Klima, Miljø & Energi
Maskin & Design
Matematik, Fysik & Nano
Naturvidenskab
Produktion, Logistik & Transport
Teknik & Teknologi
Arbejdsområde
Forskning & Udvikling
Naturvidenskab
Teknik
Få opslag som dette inden alle andre

Danmarks Tekniske Universitet (DTU) - hurtigt overblik


Danmarks Tekniske Universitet (DTU)
Danmarks Tekniske Universitet (DTU)
DTU er et teknisk eliteuniversitet med international rækkevidde og standard. Vores mission er at udvikle og nyttiggøre naturvidenskab og teknisk videnskab til gavn for samfundet. 11.200 studerende uddanner sig her til fremtiden, og 6.000 medarbejdere har hver dag fokus på uddannelse, forskning, myndighedsrådgivning og innovation, som bidrager til øget vækst og velfærd.

Placering
Anker Engelunds Vej 1
2800 Kgs. Lyngby
Logo: Danmarks Tekniske Universitet (DTU)
Efterspørgsel efter nye talenter

Hvilke jobtyper og arbejdsområder udbyder vi normalt og hvor mange nye talenter søger vi efter?


LinkedIn

Følg vores aktiviteter på LinkedIn.


Webside

Få mere info omkring vores virksomhed på vores egne websider:

www.dtu.dk


Danmarks Tekniske Universitet (DTU) i Google

Er der andre informationer om os, som du burde vide? Se, hvad en Google-søgning siger.




https://studerendeonline.dk/job/1692482//
Karriereprofil i Jobbanken
Opret karriereprofil: Automatiser din jobsøgning med jobagenter, få adgang til nyeste job før andre og bliv synlig for arbejdsgivere med en talentprofil.
nej tak, tag mig til jobopslaget
nej tak, vis ansøgningsinfo
KONKURRENCE
HPT